\(\int \frac {(d+e x)^{3/2}}{(f+g x) (a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}} \, dx\) [669]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 46, antiderivative size = 133 \[ \int \frac {(d+e x)^{3/2}}{(f+g x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=-\frac {2 \sqrt {d+e x}}{(c d f-a e g) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}-\frac {2 \sqrt {g} \arctan \left (\frac {\sqrt {g} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {c d f-a e g} \sqrt {d+e x}}\right )}{(c d f-a e g)^{3/2}} \]

[Out]

-2*arctan(g^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(-a*e*g+c*d*f)^(1/2)/(e*x+d)^(1/2))*g^(1/2)/(-a*e*g+
c*d*f)^(3/2)-2*(e*x+d)^(1/2)/(-a*e*g+c*d*f)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)

Rubi [A] (verified)

Time = 0.11 (sec) , antiderivative size = 133, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.065, Rules used = {882, 888, 211} \[ \int \frac {(d+e x)^{3/2}}{(f+g x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=-\frac {2 \sqrt {g} \arctan \left (\frac {\sqrt {g} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} \sqrt {c d f-a e g}}\right )}{(c d f-a e g)^{3/2}}-\frac {2 \sqrt {d+e x}}{\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2} (c d f-a e g)} \]

[In]

Int[(d + e*x)^(3/2)/((f + g*x)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)),x]

[Out]

(-2*Sqrt[d + e*x])/((c*d*f - a*e*g)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]) - (2*Sqrt[g]*ArcTan[(Sqrt[g]*
Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(Sqrt[c*d*f - a*e*g]*Sqrt[d + e*x])])/(c*d*f - a*e*g)^(3/2)

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 882

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Simp[e^2*(d + e*x)^(m - 1)*(f + g*x)^(n + 1)*((a + b*x + c*x^2)^(p + 1)/((p + 1)*(c*e*f + c*d*g - b*e*g))), x]
 + Dist[e^2*g*((m - n - 2)/((p + 1)*(c*e*f + c*d*g - b*e*g))), Int[(d + e*x)^(m - 1)*(f + g*x)^n*(a + b*x + c*
x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[
c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0] && LtQ[p, -1] && RationalQ[n]

Rule 888

Int[Sqrt[(d_) + (e_.)*(x_)]/(((f_.) + (g_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[
2*e^2, Subst[Int[1/(c*(e*f + d*g) - b*e*g + e^2*g*x^2), x], x, Sqrt[a + b*x + c*x^2]/Sqrt[d + e*x]], x] /; Fre
eQ[{a, b, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 \sqrt {d+e x}}{(c d f-a e g) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}-\frac {g \int \frac {\sqrt {d+e x}}{(f+g x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{c d f-a e g} \\ & = -\frac {2 \sqrt {d+e x}}{(c d f-a e g) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}-\frac {\left (2 e^2 g\right ) \text {Subst}\left (\int \frac {1}{-e \left (c d^2+a e^2\right ) g+c d e (e f+d g)+e^2 g x^2} \, dx,x,\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x}}\right )}{c d f-a e g} \\ & = -\frac {2 \sqrt {d+e x}}{(c d f-a e g) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}-\frac {2 \sqrt {g} \tan ^{-1}\left (\frac {\sqrt {g} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {c d f-a e g} \sqrt {d+e x}}\right )}{(c d f-a e g)^{3/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.10 (sec) , antiderivative size = 109, normalized size of antiderivative = 0.82 \[ \int \frac {(d+e x)^{3/2}}{(f+g x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=-\frac {2 \sqrt {d+e x} \left (\sqrt {c d f-a e g}+\sqrt {g} \sqrt {a e+c d x} \arctan \left (\frac {\sqrt {g} \sqrt {a e+c d x}}{\sqrt {c d f-a e g}}\right )\right )}{(c d f-a e g)^{3/2} \sqrt {(a e+c d x) (d+e x)}} \]

[In]

Integrate[(d + e*x)^(3/2)/((f + g*x)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)),x]

[Out]

(-2*Sqrt[d + e*x]*(Sqrt[c*d*f - a*e*g] + Sqrt[g]*Sqrt[a*e + c*d*x]*ArcTan[(Sqrt[g]*Sqrt[a*e + c*d*x])/Sqrt[c*d
*f - a*e*g]]))/((c*d*f - a*e*g)^(3/2)*Sqrt[(a*e + c*d*x)*(d + e*x)])

Maple [A] (verified)

Time = 0.54 (sec) , antiderivative size = 118, normalized size of antiderivative = 0.89

method result size
default \(-\frac {2 \sqrt {\left (c d x +a e \right ) \left (e x +d \right )}\, \left (g \,\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) \sqrt {c d x +a e}-\sqrt {\left (a e g -c d f \right ) g}\right )}{\sqrt {e x +d}\, \left (c d x +a e \right ) \left (a e g -c d f \right ) \sqrt {\left (a e g -c d f \right ) g}}\) \(118\)

[In]

int((e*x+d)^(3/2)/(g*x+f)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-2/(e*x+d)^(1/2)*((c*d*x+a*e)*(e*x+d))^(1/2)*(g*arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2))*(c*d*x+a*
e)^(1/2)-((a*e*g-c*d*f)*g)^(1/2))/(c*d*x+a*e)/(a*e*g-c*d*f)/((a*e*g-c*d*f)*g)^(1/2)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 255 vs. \(2 (117) = 234\).

Time = 0.29 (sec) , antiderivative size = 553, normalized size of antiderivative = 4.16 \[ \int \frac {(d+e x)^{3/2}}{(f+g x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\left [-\frac {{\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )} \sqrt {-\frac {g}{c d f - a e g}} \log \left (-\frac {c d e g x^{2} - c d^{2} f + 2 \, a d e g + 2 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (c d f - a e g\right )} \sqrt {e x + d} \sqrt {-\frac {g}{c d f - a e g}} - {\left (c d e f - {\left (c d^{2} + 2 \, a e^{2}\right )} g\right )} x}{e g x^{2} + d f + {\left (e f + d g\right )} x}\right ) + 2 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d}}{a c d^{2} e f - a^{2} d e^{2} g + {\left (c^{2} d^{2} e f - a c d e^{2} g\right )} x^{2} + {\left ({\left (c^{2} d^{3} + a c d e^{2}\right )} f - {\left (a c d^{2} e + a^{2} e^{3}\right )} g\right )} x}, -\frac {2 \, {\left ({\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )} \sqrt {\frac {g}{c d f - a e g}} \arctan \left (-\frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (c d f - a e g\right )} \sqrt {e x + d} \sqrt {\frac {g}{c d f - a e g}}}{c d e g x^{2} + a d e g + {\left (c d^{2} + a e^{2}\right )} g x}\right ) + \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d}\right )}}{a c d^{2} e f - a^{2} d e^{2} g + {\left (c^{2} d^{2} e f - a c d e^{2} g\right )} x^{2} + {\left ({\left (c^{2} d^{3} + a c d e^{2}\right )} f - {\left (a c d^{2} e + a^{2} e^{3}\right )} g\right )} x}\right ] \]

[In]

integrate((e*x+d)^(3/2)/(g*x+f)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="fricas")

[Out]

[-((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(-g/(c*d*f - a*e*g))*log(-(c*d*e*g*x^2 - c*d^2*f + 2*a*d*e*g +
2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(c*d*f - a*e*g)*sqrt(e*x + d)*sqrt(-g/(c*d*f - a*e*g)) - (c*d*e*
f - (c*d^2 + 2*a*e^2)*g)*x)/(e*g*x^2 + d*f + (e*f + d*g)*x)) + 2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*s
qrt(e*x + d))/(a*c*d^2*e*f - a^2*d*e^2*g + (c^2*d^2*e*f - a*c*d*e^2*g)*x^2 + ((c^2*d^3 + a*c*d*e^2)*f - (a*c*d
^2*e + a^2*e^3)*g)*x), -2*((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(g/(c*d*f - a*e*g))*arctan(-sqrt(c*d*e*
x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(c*d*f - a*e*g)*sqrt(e*x + d)*sqrt(g/(c*d*f - a*e*g))/(c*d*e*g*x^2 + a*d*e*g
+ (c*d^2 + a*e^2)*g*x)) + sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d))/(a*c*d^2*e*f - a^2*d*e^2*
g + (c^2*d^2*e*f - a*c*d*e^2*g)*x^2 + ((c^2*d^3 + a*c*d*e^2)*f - (a*c*d^2*e + a^2*e^3)*g)*x)]

Sympy [F(-1)]

Timed out. \[ \int \frac {(d+e x)^{3/2}}{(f+g x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\text {Timed out} \]

[In]

integrate((e*x+d)**(3/2)/(g*x+f)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(d+e x)^{3/2}}{(f+g x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\int { \frac {{\left (e x + d\right )}^{\frac {3}{2}}}{{\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac {3}{2}} {\left (g x + f\right )}} \,d x } \]

[In]

integrate((e*x+d)^(3/2)/(g*x+f)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="maxima")

[Out]

integrate((e*x + d)^(3/2)/((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(3/2)*(g*x + f)), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 281 vs. \(2 (117) = 234\).

Time = 0.38 (sec) , antiderivative size = 281, normalized size of antiderivative = 2.11 \[ \int \frac {(d+e x)^{3/2}}{(f+g x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=-2 \, e^{2} {\left (\frac {g \arctan \left (\frac {\sqrt {{\left (e x + d\right )} c d e - c d^{2} e + a e^{3}} g}{\sqrt {c d f g - a e g^{2}} e}\right )}{\sqrt {c d f g - a e g^{2}} {\left (c d f {\left | e \right |} - a e g {\left | e \right |}\right )} e} + \frac {1}{\sqrt {{\left (e x + d\right )} c d e - c d^{2} e + a e^{3}} {\left (c d f {\left | e \right |} - a e g {\left | e \right |}\right )}}\right )} + \frac {2 \, {\left (\sqrt {-c d^{2} e + a e^{3}} e g \arctan \left (\frac {\sqrt {-c d^{2} e + a e^{3}} g}{\sqrt {c d f g - a e g^{2}} e}\right ) + \sqrt {c d f g - a e g^{2}} e^{2}\right )}}{\sqrt {-c d^{2} e + a e^{3}} \sqrt {c d f g - a e g^{2}} c d f {\left | e \right |} - \sqrt {-c d^{2} e + a e^{3}} \sqrt {c d f g - a e g^{2}} a e g {\left | e \right |}} \]

[In]

integrate((e*x+d)^(3/2)/(g*x+f)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="giac")

[Out]

-2*e^2*(g*arctan(sqrt((e*x + d)*c*d*e - c*d^2*e + a*e^3)*g/(sqrt(c*d*f*g - a*e*g^2)*e))/(sqrt(c*d*f*g - a*e*g^
2)*(c*d*f*abs(e) - a*e*g*abs(e))*e) + 1/(sqrt((e*x + d)*c*d*e - c*d^2*e + a*e^3)*(c*d*f*abs(e) - a*e*g*abs(e))
)) + 2*(sqrt(-c*d^2*e + a*e^3)*e*g*arctan(sqrt(-c*d^2*e + a*e^3)*g/(sqrt(c*d*f*g - a*e*g^2)*e)) + sqrt(c*d*f*g
 - a*e*g^2)*e^2)/(sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^2)*c*d*f*abs(e) - sqrt(-c*d^2*e + a*e^3)*sqrt(c*
d*f*g - a*e*g^2)*a*e*g*abs(e))

Mupad [F(-1)]

Timed out. \[ \int \frac {(d+e x)^{3/2}}{(f+g x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\int \frac {{\left (d+e\,x\right )}^{3/2}}{\left (f+g\,x\right )\,{\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^{3/2}} \,d x \]

[In]

int((d + e*x)^(3/2)/((f + g*x)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2)),x)

[Out]

int((d + e*x)^(3/2)/((f + g*x)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2)), x)